Isoperimetric inequalities in Euclidean convex bodies

Author:

Ritoré Manuel,Vernadakis Efstratios

Abstract

In this paper we consider the problem of minimizing the relative perimeter under a volume constraint in the interior of a convex body, i.e., a compact convex set in Euclidean space with interior points. We shall not impose any regularity assumption on the boundary of the convex set. Amongst other results, we shall prove that Hausdorff convergence in the space of convex bodies implies Lipschitz convergence, the continuity of the isoperimetric profile with respect to the Hausdorff distance, and the convergence in Hausdorff distance of sequences of isoperimetric regions and their free boundaries. We shall also describe the behavior of the isoperimetric profile for small volume and the behavior of isoperimetric regions for small volume.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference55 articles.

1. The convex hull property and topology of hypersurfaces with nonnegative curvature;Alexander, Stephanie;Adv. Math.,2003

2. On the first variation of a varifold;Allard, William K.;Ann. of Math. (2),1972

3. Spherical symmetrization;Almgren, F.;Rend. Circ. Mat. Palermo (2) Suppl.,1987

4. Appunti dei Corsi Tenuti da Docenti della Scuola. [Notes of Courses Given by Teachers at the School];Ambrosio, Luigi,1997

5. Oxford Lecture Series in Mathematics and its Applications;Ambrosio, Luigi,2004

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the isoperimetric profile of the hypercube;Mathematische Annalen;2023-12-06

2. Relative Isoperimetric Inequalities;Isoperimetric Inequalities in Riemannian Manifolds;2023

3. The Isoperimetric Profile for Small and Large Volumes;Isoperimetric Inequalities in Riemannian Manifolds;2023

4. Isoperimetric inequalities in unbounded convex bodies;Memoirs of the American Mathematical Society;2022-03

5. The isoperimetric problem in 2d domains without necks;Calculus of Variations and Partial Differential Equations;2022-02-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3