Isoperimetric inequalities in unbounded convex bodies

Author:

Leonardi Gian,Ritoré Manuel,Vernadakis Efstratios

Abstract

We consider the problem of minimizing the relative perimeter under a volume constraint in an unbounded convex body C R n C\subset \mathbb {R}^{n} , without assuming any further regularity on the boundary of C C . Motivated by an example of an unbounded convex body with null isoperimetric profile, we introduce the concept of unbounded convex body with uniform geometry. We then provide a handy characterization of the uniform geometry property and, by exploiting the notion of asymptotic cylinder of C C , we prove existence of isoperimetric regions in a generalized sense. By an approximation argument we show the strict concavity of the isoperimetric profile and, consequently, the connectedness of generalized isoperimetric regions. We also focus on the cases of small as well as of large volumes; in particular we show existence of isoperimetric regions with sufficiently large volumes, for special classes of unbounded convex bodies. We finally address some questions about isoperimetric rigidity and analyze the asymptotic behavior of the isoperimetric profile in connection with the notion of isoperimetric dimension.

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference86 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rigidity and large volume residues in exterior isoperimetry for convex sets;Advances in Mathematics;2024-09

2. Nonexistence of isoperimetric sets in spaces of positive curvature;Journal für die reine und angewandte Mathematik (Crelles Journal);2024-05-30

3. The limit point in the Jante’s law process has an absolutely continuous distribution;Stochastic Processes and their Applications;2024-02

4. On the isoperimetric profile of the hypercube;Mathematische Annalen;2023-12-06

5. Asymptotic isoperimetry on non collapsed spaces with lower Ricci bounds;Mathematische Annalen;2023-08-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3