Abstract
AbstractWe give a complete characterization of all isoperimetric sets contained in a domain of the Euclidean plane, that is bounded by a Jordan curve and satisfies a no neck property. Further, we prove that the isoperimetric profile of such domain is convex above the volume of the largest ball contained in it, and that its square is globally convex.
Funder
Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Analysis
Reference37 articles.
1. Alter, F., Caselles, V.: Uniqueness of the Cheeger set of a convex body. Nonlinear Anal. 70, 32–44 (2009). https://doi.org/10.1016/j.na.2007.11.032
2. Alter, F., Caselles, V., Chambolle, A.: A characterization of convex calibrable sets in $${\mathbb{R}}^n$$. Math. Ann. 332(2), 329–366 (2005). https://doi.org/10.1007/s00208-004-0628-9
3. Ambrosio, L., Caselles, V., Masnou, S., Morel, J.-M.: Connected components of sets of finite perimeter and applications to image processing. J. Eur. Math. Soc. (JEMS) 3(1), 39–92 (2001). https://doi.org/10.1007/PL00011302
4. Barozzi, E., Gonzalez, E., Massari, U.: The mean curvature of a Lipschitz continuous manifold. Rend. Mat. Acc. Lincei 14(4), 257–277 (2003)
5. Besicovitch, A.S.: Variants of a classical isoperimetric problem. Quart. J. Math. Oxf. Ser. 2(3), 42–49 (1952)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献