Improvements of 𝑝-adic estimates of exponential sums

Author:

Feng Yulu,Hong Shaofang

Abstract

Let n , r n, r and f f be positive integers. Let p p be a prime number and ψ \psi be an arbitrary fixed nontrivial additive character of the finite field F q \mathbb F_q with q = p f q=p^f elements. Let F F be a polynomial in F q [ x 1 , , x n ] \mathbb F_q[x_1,\dots ,x_n] and V V be the affine algebraic variety defined over F q \mathbb {F}_q by the simultaneous vanishing of the polynomials { F i } i = 1 r F q [ x 1 , , x n ] \{F_i\}_{i=1}^r\subseteq \mathbb F_q[x_1,\dots ,x_n] . Let Z 0 \mathbb {Z}_{\ge 0} stand for the set of all nonnegative integers and A A be an arbitrary nonempty subset of { 1 , , n } \{1,\dots ,n\} . For a polynomial H ( X ) = d α d X d H(X)=\sum _{{\mathbf {d}}}\alpha _{\mathbf {d}}X^{\mathbf {d}} with d = ( d 1 , , d n ) Z 0 n , X d = x 1 d 1 x n d n {\mathbf {d}}=(d_1,\dots ,d_n)\in \mathbb {Z}_{\ge 0}^n, X^{\mathbf {d}}=x_1^{d_1}\dots x_n^{d_n} and α d F q \alpha _{\mathbf {d}}\in \mathbb {F}_q^* , we define deg A ( H ) = max d { i A d i } \deg _A(H)=\max _{{\mathbf {d}}}\{\sum _{i\in A}d_i\} to be the A A -degree of H H . In this paper, for the exponential sum S ( F , V , ψ ) = X V ( F q ) ψ ( F ( X ) ) S(F,V,\psi )=\sum _{X\in V(\mathbb {F}_q)}\psi (F(X)) with V ( F q ) V(\mathbb {F}_q) being the set of the F q \mathbb {F}_q -rational points of V V , we show that o r d q S ( F , V , ψ ) | A | i = 1 r deg A ( F i ) max 1 i r { deg A ( F ) , deg A ( F i ) } \begin{equation*} \mathrm {ord}_q S(F,V,\psi )\ge \frac {|A|-\sum _{i=1}^r\deg _A(F_i)} {\max _{1\le i\le r}\{\deg _A(F),\deg _A(F_i)\}} \end{equation*} if deg A ( F ) > 0 \deg _A(F)>0 or deg A ( F i ) > 0 \deg _A(F_i)>0 for some i { 1 , , r } i\in \{1,\dots ,r\} . This estimate improves Sperber’s theorem obtained in 1986. This also leads to an improvement of the p p -adic valuation of the number N ( V ) N(V) of F q \mathbb {F}_q -rational points on the variety V V which strengthens the Ax-Katz theorem. Moreover, we use the A A -degree and p p -weight A A -degree to establish p p -adic estimates on multiplicative character sums and twisted exponential sums which improve Wan’s results gotten in 1995.

Funder

National Natural Science Foundation of China

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference12 articles.

1. 𝑝-adic estimates for exponential sums and the theorem of Chevalley-Warning;Adolphson, Alan;Ann. Sci. \'{E}cole Norm. Sup. (4),1987

2. Zeroes of polynomials over finite fields;Ax, James;Amer. J. Math.,1964

3. Dilation of Newton polytope and 𝑝-adic estimate;Cao, Wei;Discrete Comput. Geom.,2011

4. A partial improvement of the Ax-Katz theorem;Cao, Wei;J. Number Theory,2012

5. Démonstration d’une hypothèse de M. Artin;Chevalley, C.;Abh. Math. Sem. Univ. Hamburg,1935

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3