Affiliation:
1. Mathematical College, Sichuan University, Chengdu 610064, China
2. School of Teacher Education, Hubei Minzu University, Enshi 445000, China
3. School of Mathematics and Computer Science, Panzhihua University, Panzhihua 617000, China
Abstract
<abstract><p>Let $ a, n $ be positive integers and let $ p $ be a prime number. Let $ \mathbb F_q $ be the finite field with $ q = p^a $ elements. Let $ \{a_i\}_{i = 1}^\infty $ be an arbitrary given infinite sequence of elements in $ \mathbb F_q $ and $ a_1\neq 0 $. For each positive integer $ i $, let $ \{d_{i+j, i}\}_{j = 0}^\infty $ be an arbitrary given sequence of positive integers with $ d_{ii} $ coprime to $ q-1 $. For each integer $ n\ge 1 $, let $ N_n $, $ \bar N_n $ and $ \widetilde{N}_n $ denote the number of $ \mathbb F_q $-rational points of the hypersurfaces defined by the following three equations:</p>
<p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ a_1x_1+\cdots+a_nx_n = b, $\end{document} </tex-math></disp-formula></p>
<p><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ x_1^2+\cdots+x_n^2 = b $\end{document} </tex-math></disp-formula></p>
<p>and</p>
<p><disp-formula> <label/> <tex-math id="FE3"> \begin{document}$ a_1 x_1^{d_{11}}+a_2 x_1^{d_{21}}x_2^{d_{22}}+ \cdots+a_n x_1^{d_{n1}}x_2^{d_{n2}} \cdots x_n^{d_{nn}} = b, $\end{document} </tex-math></disp-formula></p>
<p>respectively. In this paper, we show that the generating function $ \sum_{n = 1}^{\infty}N_nt^n $ is a rational function in $ t $. Moreover, we show that if $ p $ is an odd prime, then the generating functions $ \sum_{n = 1}^{\infty}\bar N_nt^n $ and $ \sum_{n = 1}^{\infty}\widetilde{N}_nt^n $ are both rational functions in $ t $. Moreover, we present the explicit rational expressions of $ \sum_{n = 1}^{\infty}N_nt^n $, $ \sum_{n = 1}^{\infty}\bar N_nt^n $ and $ \sum_{n = 1}^{\infty}\widetilde{N}_nt^n $, respectively.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)