Affiliation:
1. School of Teacher Education , Hubei Minzu University , Enshi 445000 , P. R. China
2. School of Mathematics , Southwest Jiaotong University , Chengdu , 610031 , P. R. China ; and Department of Mathematics and Statistics, Brock University, St. Catharines, Ontario L2S 3A1, Canada
Abstract
Abstract
Let
𝔽
q
{\mathbb{F}_{q}}
be the finite field of
odd characteristic p with q elements (
q
=
p
n
{q=p^{n}}
,
n
∈
ℕ
{n\in\mathbb{N}}
)
and let
𝔽
q
*
{\mathbb{F}_{q}^{*}}
represent the set of nonzero elements
of
𝔽
q
{\mathbb{F}_{q}}
. By making use of the Smith normal form of
exponent matrices, we obtain an explicit formula for the
number of rational points on the variety defined by the
following system of equations over
𝔽
q
{\mathbb{F}_{q}}
:
{
∑
i
=
1
r
a
i
(
1
)
x
1
e
i
1
(
1
)
⋯
x
n
e
i
n
(
1
)
=
b
1
,
∑
j
′
=
0
t
-
1
∑
i
′
=
1
r
j
′
+
1
-
r
j
′
a
r
j
′
+
i
′
(
2
)
x
1
e
r
j
′
+
i
′
,
1
(
2
)
⋯
x
n
j
′
+
1
e
r
j
′
+
i
′
,
n
j
′
+
1
(
2
)
=
b
2
,
\left\{\begin{aligned} &\displaystyle\sum_{i=1}^{r}a^{(1)}_{i}x_{1}^{e_{i1}^{(%
1)}}\cdots x_{n}^{e_{in}^{(1)}}=b_{1},\\
&\displaystyle\sum^{t-1}_{j^{\prime}=0}\sum^{r_{j^{\prime}+1}-r_{j^{\prime}}}_%
{i^{\prime}=1}a^{(2)}_{r_{j^{\prime}}+i^{\prime}}x_{1}^{e_{r_{j^{\prime}}+i^{%
\prime},1}^{(2)}}\cdots x_{n_{{j^{\prime}}+1}}^{e_{r_{j^{\prime}}+i^{\prime},n%
_{{j^{\prime}}+1}}^{(2)}}=b_{2},\end{aligned}\right.\vspace*{1mm}
where
b
i
∈
𝔽
q
{b_{i}\in\mathbb{F}_{q}}
(
i
=
1
,
2
{i=1,2}
),
t
∈
ℕ
{t\in\mathbb{N}}
,
0
=
n
0
<
n
1
<
n
2
<
⋯
<
n
t
,
0=n_{0}<n_{1}<n_{2}<\cdots<n_{t},\vspace*{1mm}
n
k
-
1
<
n
≤
n
k
{n_{k-1}<n\leq n_{k}}
for some
1
≤
k
≤
t
{1\leq k\leq t}
,
0
=
r
0
<
r
1
<
r
2
<
⋯
<
r
t
,
0=r_{0}<r_{1}<r_{2}<\cdots<r_{t},\vspace*{1mm}
a
i
(
1
)
∈
𝔽
q
*
{a^{(1)}_{i}\in\mathbb{F}_{q}^{*}}
for
i
∈
{
1
,
…
,
r
}
{i\in\{1,\ldots,r\}}
,
a
i
′
(
2
)
∈
𝔽
q
*
{a^{(2)}_{i^{\prime}}\in\mathbb{F}_{q}^{*}}
for
i
′
∈
{
1
,
…
,
r
t
}
{{i^{\prime}}\in\{1,\ldots,r_{t}\}}
, and the exponent of each variable
is a positive integer. This generalizes the results obtained
previously by Wolfmann, Sun, Cao, and others. Our result
also gives a partial answer to an open problem raised by Hu, Hong and Zhao
[S. N. Hu, S. F. Hong and W. Zhao,
The number of rational points of a family of hypersurfaces over finite fields,
J. Number Theory 156 2015, 135–153].
Subject
Applied Mathematics,General Mathematics