On the number of rational points of certain algebraic varieties over finite fields

Author:

Zhu Guangyan1,Hong Siao2

Affiliation:

1. School of Teacher Education , Hubei Minzu University , Enshi 445000 , P. R. China

2. School of Mathematics , Southwest Jiaotong University , Chengdu , 610031 , P. R. China ; and Department of Mathematics and Statistics, Brock University, St. Catharines, Ontario L2S 3A1, Canada

Abstract

Abstract Let 𝔽 q {\mathbb{F}_{q}} be the finite field of odd characteristic p with q elements ( q = p n {q=p^{n}} , n {n\in\mathbb{N}} ) and let 𝔽 q * {\mathbb{F}_{q}^{*}} represent the set of nonzero elements of 𝔽 q {\mathbb{F}_{q}} . By making use of the Smith normal form of exponent matrices, we obtain an explicit formula for the number of rational points on the variety defined by the following system of equations over 𝔽 q {\mathbb{F}_{q}} : { i = 1 r a i ( 1 ) x 1 e i 1 ( 1 ) x n e i n ( 1 ) = b 1 , j = 0 t - 1 i = 1 r j + 1 - r j a r j + i ( 2 ) x 1 e r j + i , 1 ( 2 ) x n j + 1 e r j + i , n j + 1 ( 2 ) = b 2 , \left\{\begin{aligned} &\displaystyle\sum_{i=1}^{r}a^{(1)}_{i}x_{1}^{e_{i1}^{(% 1)}}\cdots x_{n}^{e_{in}^{(1)}}=b_{1},\\ &\displaystyle\sum^{t-1}_{j^{\prime}=0}\sum^{r_{j^{\prime}+1}-r_{j^{\prime}}}_% {i^{\prime}=1}a^{(2)}_{r_{j^{\prime}}+i^{\prime}}x_{1}^{e_{r_{j^{\prime}}+i^{% \prime},1}^{(2)}}\cdots x_{n_{{j^{\prime}}+1}}^{e_{r_{j^{\prime}}+i^{\prime},n% _{{j^{\prime}}+1}}^{(2)}}=b_{2},\end{aligned}\right.\vspace*{1mm} where b i 𝔽 q {b_{i}\in\mathbb{F}_{q}} ( i = 1 , 2 {i=1,2} ), t {t\in\mathbb{N}} , 0 = n 0 < n 1 < n 2 < < n t , 0=n_{0}<n_{1}<n_{2}<\cdots<n_{t},\vspace*{1mm} n k - 1 < n n k {n_{k-1}<n\leq n_{k}} for some 1 k t {1\leq k\leq t} , 0 = r 0 < r 1 < r 2 < < r t , 0=r_{0}<r_{1}<r_{2}<\cdots<r_{t},\vspace*{1mm} a i ( 1 ) 𝔽 q * {a^{(1)}_{i}\in\mathbb{F}_{q}^{*}} for i { 1 , , r } {i\in\{1,\ldots,r\}} , a i ( 2 ) 𝔽 q * {a^{(2)}_{i^{\prime}}\in\mathbb{F}_{q}^{*}} for i { 1 , , r t } {{i^{\prime}}\in\{1,\ldots,r_{t}\}} , and the exponent of each variable is a positive integer. This generalizes the results obtained previously by Wolfmann, Sun, Cao, and others. Our result also gives a partial answer to an open problem raised by Hu, Hong and Zhao [S. N. Hu, S. F. Hong and W. Zhao, The number of rational points of a family of hypersurfaces over finite fields, J. Number Theory 156 2015, 135–153].

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3