Finiteness for Hecke algebras of 𝑝-adic groups

Author:

Dat Jean-François,Helm David,Kurinczuk Robert,Moss Gilbert

Abstract

Let G G be a reductive group over a non-archimedean local field F F of residue characteristic p p . We prove that the Hecke algebras of G ( F ) G(F) , with coefficients in any noetherian Z \mathbb {Z}_{\ell } -algebra R R with p \ell \neq p , are finitely generated modules over their centers, and that these centers are finitely generated R R -algebras. Following Bernstein’s original strategy, we then deduce that “second adjointness” holds for smooth representations of G ( F ) G(F) with coefficients in any Z [ 1 p ] \mathbb {Z}[\frac {1}{p}] -algebra. These results had been conjectured for a long time. The crucial new tool that unlocks the problem is the Fargues-Scholze morphism between a certain “excursion algebra” defined on the Langlands parameters side and the Bernstein center of G ( F ) G(F) . Using this bridge, our main results are representation theoretic counterparts of the finiteness of certain morphisms between coarse moduli spaces of local Langlands parameters that we also prove here, which may be of independent interest.

Funder

Agence Nationale de la Recherche

Publisher

American Mathematical Society (AMS)

Subject

Applied Mathematics,General Mathematics

Reference9 articles.

1. Le “centre” de Bernstein;Bernstein, J. N.,1984

2. 𝑣-tempered representations of 𝑝-adic groups. I. 𝑙-adic case;Dat, J.-F.;Duke Math. J.,2005

3. Finitude pour les représentations lisses de groupes 𝑝-adiques;Dat, Jean-Francois;J. Inst. Math. Jussieu,2009

4. [DHKM20] Jean-François Dat, David Helm, Robert Kurinczuk, and Gil Moss, Moduli of Langlands parameters, arXiv:2009.06708, 2020.

5. [FS21] Laurent Fargues and Peter Scholze, Geometrization of the local Langlands correspondence, arXiv:2102.13459, 2021.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tate Cohomology of Whittaker Lattices and Base Change of Generic Representations of GLn;International Mathematics Research Notices;2024-08-30

2. Morphisms of Character Varieties;International Mathematics Research Notices;2024-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3