Abstract
RésuméNous considérons la catégorie des représentations lisses d'un groupe p-adique à coefficients dans un anneau R dans lequel p est inversible. Notre objectif principal est de prouver que cette catégorie est noetherienne si R l'est, généralisant donc un fameux résultat de Bernstein lorsque R = ℂ Dans un premier temps, nous ramenons ce problème à celui de démontrer une propriété de «seconde adjonction» entre foncteurs paraboliques, elle-aussi prouvée par Bernstein lorsque R = ℂ. Puis nous définissons et étudions des «foncteurs parahoriques» entre représentations de groupes de points entiers de certains modèles de G et de leurs «sous-groupes de Levi». Appliquant cela aux modéles de Bruhat-Tits, nous obtenons la seconde adjonction pour les paraboliques minimaux. Pour les paraboliques non minimaux, nous nous restreignons aux groupes classique et appliquons notre étude aux modèles canoniques des groupes de Bushnel-Kutzko et Stevens. Notre étude s'applique aussi aux modèles de Yu, mais il manque un résultat d'exhaustivité pour conclure dans le cas des groupes suffisamment modérés.
Publisher
Cambridge University Press (CUP)
Reference32 articles.
1. Supercuspidal representations: An exhaustion theorem
2. 4. Bezrukavnikov R. , Homological properties of representations of p-adic groups related to the geometry of the group at infinity, disponible à http://fr.arxiv.org/abs/math.RT/0406223 (1999).
3. Néron Models
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献