Finitude pour les représentations lisses de groupes p-adiques

Author:

Dat Jean-Francois

Abstract

RésuméNous considérons la catégorie des représentations lisses d'un groupe p-adique à coefficients dans un anneau R dans lequel p est inversible. Notre objectif principal est de prouver que cette catégorie est noetherienne si R l'est, généralisant donc un fameux résultat de Bernstein lorsque R = ℂ Dans un premier temps, nous ramenons ce problème à celui de démontrer une propriété de «seconde adjonction» entre foncteurs paraboliques, elle-aussi prouvée par Bernstein lorsque R = ℂ. Puis nous définissons et étudions des «foncteurs parahoriques» entre représentations de groupes de points entiers de certains modèles de G et de leurs «sous-groupes de Levi». Appliquant cela aux modéles de Bruhat-Tits, nous obtenons la seconde adjonction pour les paraboliques minimaux. Pour les paraboliques non minimaux, nous nous restreignons aux groupes classique et appliquons notre étude aux modèles canoniques des groupes de Bushnel-Kutzko et Stevens. Notre étude s'applique aussi aux modèles de Yu, mais il manque un résultat d'exhaustivité pour conclure dans le cas des groupes suffisamment modérés.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference32 articles.

1. Supercuspidal representations: An exhaustion theorem

2. 4. Bezrukavnikov R. , Homological properties of representations of p-adic groups related to the geometry of the group at infinity, disponible à http://fr.arxiv.org/abs/math.RT/0406223 (1999).

3. Néron Models

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3