Tate Cohomology of Whittaker Lattices and Base Change of Generic Representations of GLn

Author:

Nadimpalli Santosh1,Dhar Sabyasachi1

Affiliation:

1. Department of Mathematics and Statistics, Indian Institute of Technology Kanpur , U.P. 208016, India

Abstract

Abstract Let $p$ and $l$ be two distinct odd primes, and let $n\geq 2$ be a positive integer. Let $E$ be a finite Galois extension of degree $l$ of a $p$-adic field $F$. Let $q$ be the cardinality of the residue field of $F$. Let $\pi _{F}$ be an integral $l$-adic generic representation of $\mathrm{GL}_{n}(F)$, and let $\pi _{E}$ be the base change of $\pi _{F}$. Let $J_{l}(\pi _{F})$ (resp. $J_{l}(\pi _{E})$) be the unique generic component of the mod-$l$ reduction $r_{l}(\pi _{F})$ (resp. $r_{l}(\pi _{E})$). Assuming that $l$ does not divide $|\mathrm{GL}_{n-1}(\mathbb{F}_{q})|$, we prove that the Frobenius twist of $J_{l}(\pi _{F})$ is the unique generic subquotient of the Tate cohomology group $\widehat{H}^{0}(\mathrm{Gal}(E/F), J_{l}(\pi _{E}))$—considered as a representation of $\mathrm{GL}_{n}(F)$.

Publisher

Oxford University Press (OUP)

Reference34 articles.

1. Simple algebras, base change, and the advanced theory of the trace formula;Arthur,1989

2. Generalized Whittaker models and the Bernstein center;Bushnell;Amer. J. Math.,2003

3. The local Langlands conjecture for $\mathrm{GL}(2)$;Bushnell,2006

4. Representations of the group $\mathrm{GL}\left (n,F\right ),$ where $F$ is a local non-Archimedean field;Bernšteĭn;Uspehi Mat. Nauk,1976

5. Induced representations of reductive $p$-adic groups. I;Bernstein;Ann. Sci. École Norm. Sup. (4),1977

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3