Remote bed-level change and overwash observation with low-cost ultrasonic distance sensors

Author:

Reeves Ian1,Goldstein Evan2,Anarde Katherine1,Moore Laura1

Affiliation:

1. University of North Carolina at Chapel Hill

2. University of North Carolina at Greensboro

Abstract

Few datasets exist of high-frequency, in situ measurements of storm overwash, an essential mechanism for the subaerial maintenance of barrier islands and spits. Here we describe a new sensor platform for measuring bed-level change and estimating overwash inundation depths. Our MeOw (Measuring Overwash) stations consist of two ultrasonic distance sensors, a microprocessor board, and a camera and are capable of withstanding the impacts of large storm events, can be left unattended to collect data for months to years, and are relatively inexpensive. With the exception of the camera, the MeOw stations are built with all open-source hardware and software. Herein we provide complete instructions for manufacturing the MeOw stations and present observations from a single MeOw station for a three-month (2019) deployment on a frequently overwashed section of Smith Island, VA. The MeOw stations captured three large storm events over the course of the deployment (Hurricane Dorian, Tropical Storm Melissa, and a November nor’easter), as well as several high-tide events. Based on our interpretation of the raw data, bed-level changes occurred throughout the deployment from both storm and non-storm overwash, but were particularly large during Tropical Storm Melissa where initial accretion of approximately 0.15 m was followed by 0.77 m of erosion over three days. The maximum overwash inundation depth occurred during the nor’easter and measured approximately 0.83 m. The variability in bed level over the course of our experiment highlights the importance of in situ high frequency bed-level measurements for constraining overwash inundation depths. MeOw stations are ideally suited for measuring storm overwash — or any process that necessitates tracking bed and water level elevations at high frequency during harsh conditions.

Publisher

American Shore and Beach Preservation Association

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3