Beach Profile, Water Level, and Wave Runup Measurements Using a Standalone Line-Scanning, Low-Cost (LLC) LiDAR System

Author:

O’Connor Christopher S.ORCID,Mieras Ryan S.

Abstract

A prototype rapidly deployable, Line-scanning, Low-Cost (LLC) LiDAR system (USD 400 per unit; 2020) was developed to measure coastal hydro-morphodynamic processes. A pilot field study was conducted at the U.S. Army Corps of Engineers, Field Research Facility (FRF) in Duck, North Carolina, USA to evaluate the efficacy of the LLC LiDAR in measuring beach morphology, wave runup, and free-surface elevations against proven approaches. A prototype LLC LiDAR collected continuous cross-shore line scans for 25 min of every half hour, at ~7 revolutions/s and ~1.3° angular resolution, at two locations (one day at each location), spanning 12 m (i) on the backshore berm (35 scans; Series B) and (ii) in the swash/inner surf zone (28 scans; Series C). LLC LiDAR time-averaged beach profiles and wave runup estimates were compared with the same quantities derived from the continuously sampling terrestrial LiDAR scanner installed atop the dune at the FRF (DUNE LiDAR). The average root-mean-square difference (RMSD) between 17 (6) time-averaged LLC and DUNE LiDAR beach profiles was 0.045 m (0.031 m) with a standard deviation of 0.004 m (0.002 m) during Series B (Series C). Small-scale (cm) swash zone bed level changes were resolved over 5-min increments with the LLC LiDAR. The RMSD between LLC- and DUNE LiDAR-derived wave runup excursions over two 25-min segments was 0.542 m (cross-shore) and 0.039 m (elevation) during the rising tide and 0.366 m (cross-shore) and 0.032 m (elevation) during the falling tide. Between 72–79% of the LLC LiDAR wave runup data were more accurate than the RMSD values, thereby demonstrating the LLC LiDAR is an effective, low-cost instrument for measuring wave runup and morphodynamic processes. Co-located water levels were measured with a continuously sampling (16 Hz) RBRsolo3 D|wave16 pressure logger during Series C. LLC LiDAR free-surface elevations at the nadir during one high tide (4.5 h) compared well with pressure-derived free-surface elevations (RMSD = 0.024 m, R2 = 0.85).

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3