Exploring a cost-effective and straightforward mechanism for uninterrupted in situ maximum wave runup measurements

Author:

Villarroel-Lamb Deborah1ORCID,Simons Richard R.2

Affiliation:

1. Department of Civil and Environmental Engineering, Faculty of Engineering, The University of the West Indies (UWI), St Augustine Campus, Trinidad and Tobago

2. Department of Civil, Environmental and Geomatic Engineering, Faculty of Engineering Sciences, University College London (UCL), London, UK

Abstract

Wave runup, the excess water level above mean sea level, has been measured using different techniques with varying degrees of precision and associated practical limitations. This critical parameter, typically included in coastal assessment studies, varies temporally and spatially and depends on variables that include beach characteristics and nearshore hydrodynamics. Access to continuous datasets, using efficient mechanisms can assist resource-limited regions, such as Caribbean small-island developing states (SIDS), in overcoming coastal resilience obstacles. Experiments were conducted at University College London (UCL) and the University of the West Indies (UWI), which were designed to explore the temporal behaviour of the water surface within the bed during runup events. The experiments encompassed linear waves impacting a static porous bed (UCL) and a moveable granular beach (UWI), with pressure sensors buried at the base of each beach. The analyses showed that the averaged values of the time-varying water elevations within the bed, when spatially presented, produced a quadratic or cubic polynomial fit, where the curves’ stationary points were accurate indicators of the location of the maximum runup position at the surface of the bed. In this way, an arrangement of buried pressure sensors can be used as an efficient means to accurately produce a continuous time series of maximum runup positions. This article is part of the theme issue ‘Celebrating the 15th anniversary of the Royal Society Newton International Fellowship’.

Funder

Newton Fund

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3