Transformation of Infragravity Waves during Hurricane Overwash

Author:

Anarde KatherineORCID,Figlus JensORCID,Sous Damien,Tissier MarionORCID

Abstract

Infragravity (IG) waves are expected to contribute significantly to coastal flooding and sediment transport during hurricane overwash, yet the dynamics of these low-frequency waves during hurricane impact remain poorly documented and understood. This paper utilizes hydrodynamic measurements collected during Hurricane Harvey (2017) across a low-lying barrier-island cut (Texas, U.S.A.) during sea-to-bay directed flow (i.e., overwash). IG waves were observed to propagate across the island for a period of five hours, superimposed on and depth modulated by very-low frequency storm-driven variability in water level (5.6 min to 2.8 h periods). These sea-level anomalies are hypothesized to be meteotsunami initiated by tropical cyclone rainbands. Estimates of IG energy flux show that IG energy was largely reduced across the island (79–86%) and the magnitude of energy loss was greatest for the lowest-frequency IG waves (<0.01 Hz). Using multitaper bispectral analysis, it is shown that, during overwash, nonlinear triad interactions on the sea-side of the barrier island result in energy transfer from the low-frequency IG peak to bound harmonics at high IG frequencies (>0.01 Hz). Assuming this pattern of nonlinear energy exchange persists across the wide and downward sloping barrier-island cut, it likely contributes to the observed frequency-dependence of cross-barrier IG energy losses during this relatively low surge event (<1 m).

Funder

National Science Foundation

Texas Sea Grant, Texas A and M University

Link Foundation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3