Semantic Segmentation to Extract Coronary Arteries in Invasive Coronary Angiograms

Author:

Zhao Chen,Bober Robert,Tang Haipeng,Tang JinshanORCID,Dong Minghao,Zhang Chaoyang,He Zhuo,Esposito Michele,Xu Zhihui,Zhou Weihua

Abstract

Accurate semantic segmentation of each coronary artery using invasive coronary angiography (ICA) is important for stenosis assessment and coronary artery disease (CAD) diagnosis. In this paper, we propose a multi-step semantic segmentation algorithm based on analyzing arterial segments extracted from ICAs. The proposed algorithm firstly extracts the entire arterial binary mask (binary vascular tree) using a deep learning-based method. Then we extract the centerline of the binary vascular tree and separate it into different arterial segments. Finally, by extracting the underlying arterial topology, position, and pixel features, we construct a powerful coronary artery segment classifier based on a support vector machine. Each arterial segment is classified into the left coronary artery (LCA), left anterior descending (LAD), and other types of arterial segments. The proposed method was tested on a dataset with 225 ICAs and achieved a mean accuracy of 70.33% for the multi-class artery classification and a mean intersection over union of 0.6868 for semantic segmentation of arteries. The experimental results show the effectiveness of the proposed algorithm, which provides impressive performance for analyzing the individual arteries in ICAs.

Funder

Michigan Technological University

Publisher

Avanti Publishers

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3