The Application of Deep Learning for the Segmentation and Classification of Coronary Arteries

Author:

Kaba Şerife1ORCID,Haci Huseyin2,Isin Ali3ORCID,Ilhan Ahmet4,Conkbayir Cenk5

Affiliation:

1. Department of Biomedical Engineering, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey

2. Department of Electrical-Electronic Engineering, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey

3. Department of Biomedical Engineering, Cyprus International University, TRNC Mersin 10, Nicosia 99138, Turkey

4. Department of Computer Engineering, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey

5. Department of Cardiology, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey

Abstract

In recent years, the prevalence of coronary artery disease (CAD) has become one of the leading causes of death around the world. Accurate stenosis detection of coronary arteries is crucial for timely treatment. Cardiologists use visual estimations when reading coronary angiography images to diagnose stenosis. As a result, they face various challenges which include high workloads, long processing times and human error. Computer-aided segmentation and classification of coronary arteries, as to whether stenosis is present or not, significantly reduces the workload of cardiologists and human errors caused by manual processes. Moreover, deep learning techniques have been shown to aid medical experts in diagnosing diseases using biomedical imaging. Thus, this study proposes the use of automatic segmentation of coronary arteries using U-Net, ResUNet-a, UNet++, models and classification using DenseNet201, EfficientNet-B0, Mobilenet-v2, ResNet101 and Xception models. In the case of segmentation, the comparative analysis of the three models has shown that U-Net achieved the highest score with a 0.8467 Dice score and 0.7454 Jaccard Index in comparison with UNet++ and ResUnet-a. Evaluation of the classification model’s performances has shown that DenseNet201 performed better than other pretrained models with 0.9000 accuracy, 0.9833 specificity, 0.9556 PPV, 0.7746 Cohen’s Kappa and 0.9694 Area Under the Curve (AUC).

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3