Author:
Wang Ziqi, ,Li Yang,Zhang Rui,Wang Jiabao,Li Yunchen,Chen Yao
Publisher
Aerospace Information Research Institute, Chinese Academy of Sciences
Reference105 articles.
1. Afrasiyabi A, Larochelle H, Lalonde J F and Gagné C. 2022. Matching feature sets for few-shot image classification//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans, USA: IEEE:9004-9014 [DOI: 10.1109/CVPR52688.2022.00881]
2. Antonelli S, Avola D, Cinque L, Crisostomi D, Foresti G L, Galasso F, Marini M R, Mecca A and Pannone D. 2022. Few-shot object detection: a survey. ACM Computing Surveys, 54(11s): #242 [DOI: 10.1145/3519022]
3. Bertinetto L, Henriques J F, Torr P H S and Vedaldi A. 2019. Meta-learning with differentiable closed-form solvers//Proceedings of the 7th International Conference on Learning Representations. New Orleans, USA: OpenReview.net
4. Cai J L, Zhang Y T, Guo J Y, Zhao X, Lv J W and Hu Y X. 2022. ST-PN: a spatial transformed prototypical network for few-shot SAR image classification. Remote Sensing, 14(9): #2019 [DOI: 10.3390/RS14092019]
5. Cao C J, Cui Z Y, Cao Z J, Wang L Y and Yang J Y. 2021. An integrated counterfactual sample generation and filtering approach for SAR automatic target recognition with a small sample set. Remote Sensing, 13(19): #3864 [DOI: 10.3390/rs13193864]