Abstract
Although automatic target recognition (ATR) models based on data-driven algorithms have achieved excellent performance in recent years, the synthetic aperture radar (SAR) ATR model often suffered from performance degradation when it encountered a small sample set. In this paper, an integrated counterfactual sample generation and filtering approach is proposed to alleviate the negative influence of a small sample set. The proposed method consists of a generation component and a filtering component. First, the proposed generation component utilizes the overfitting characteristics of generative adversarial networks (GANs), which ensures the generation of counterfactual target samples. Second, the proposed filtering component is built by learning different recognition functions. In the proposed filtering component, multiple SVMs trained by different SAR target sample sets provide pseudo-labels to the other SVMs to improve the recognition rate. Then, the proposed approach improves the performance of the recognition model dynamically while it continuously generates counterfactual target samples. At the same time, counterfactual target samples that are beneficial to the ATR model are also filtered. Moreover, ablation experiments demonstrate the effectiveness of the various components of the proposed method. Experimental results based on the Moving and Stationary Target Acquisition and Recognition (MSTAR) and OpenSARship dataset also show the advantages of the proposed approach. Even though the size of the constructed training set was 14.5% of the original training set, the recognition performance of the ATR model reached 91.27% with the proposed approach.
Funder
National Natural Science Foundation of China
Shanghai Aerospace Science and Technology Innovation Fund
Science and Technology on Automatic Target Recognition Laboratory (ATR) Fund
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献