Few-Shot Object Detection: A Survey

Author:

Antonelli Simone1ORCID,Avola Danilo1ORCID,Cinque Luigi1ORCID,Crisostomi Donato1ORCID,Foresti Gian Luca2ORCID,Galasso Fabio1ORCID,Marini Marco Raoul1ORCID,Mecca Alessio1ORCID,Pannone Daniele1ORCID

Affiliation:

1. Sapienza Università degli Studi di Roma, Roma, IT

2. Università degli Studi di Udine, Udine, IT

Abstract

Deep learning approaches have recently raised the bar in many fields, from Natural Language Processing to Computer Vision, by leveraging large amounts of data. However, they could fail when the retrieved information is not enough to fit the vast number of parameters, frequently resulting in overfitting and therefore in poor generalizability. Few-Shot Learning aims at designing models that can effectively operate in a scarce data regime, yielding learning strategies that only need few supervised examples to be trained. These procedures are of both practical and theoretical importance, as they are crucial for many real-life scenarios in which data is either costly or even impossible to retrieve. Moreover, they bridge the distance between current data-hungry models and human-like generalization capability. Computer vision offers various tasks that can be few-shot inherent, such as person re-identification. This survey, which to the best of our knowledge is the first tackling this problem, is focused on Few-Shot Object Detection, which has received far less attention compared to Few-Shot Classification due to the intrinsic challenge level. In this regard, this review presents an extensive description of the approaches that have been tested in the current literature, discussing their pros and cons, and classifying them according to a rigorous taxonomy.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3