A Novel Cellular Automata Classifier for COVID-19 Prediction

Author:

Pokkuluri Kiran SreeORCID,Devi Nedunuri SSSN UshaORCID

Abstract

Introduction: China has witnessed a new virus Corona,which is named COVID-19. It has become the world’s most concern as this virus has spread over the worldat a higher speed;the world has witnessed more than one lakh cases and one thousand deaths in a span of few days. Methods: We have developed a preliminary classifier with non-linear hybrid cellular automata, which is trained and tested to predict the effect of COVID-19 in terms of deaths, the number of people affected, the number of people being could be recovered, etc. This indirectly predicts the trend of this epidemic in India. We have collected the datasets from Kaggle and other standard websites. Results: The proposed classifier, hybrid non-linear cellular automata (HNLCA), was trained with 23,078 datasets and tested with 6785 datasets. HNLCA is compared with conventional methods of long short-term memory, AdaBoost, support vector machine, regression, and SVR and has reported an accuracy of 78.8%, which is better compared with the cited literature. This classifier can also predict the rate at which this virus spreads, transmission within the boundary, and of the boundary, etc.

Publisher

University of Sarajevo Faculty of Health Sciences

Subject

Nursing (miscellaneous),Medicine (miscellaneous)

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning for Identification of Behavioral Changes;Advances in Finance, Accounting, and Economics;2024-10-25

2. Long Short-Term Memory Networks for Automated Waste Treatment Augmented With IoT and Bioelectric Sensors;Advances in Environmental Engineering and Green Technologies;2024-06-14

3. Detection of Vehicle Crashes on Roads using Deep Learning;2024 2nd International Conference on Advancement in Computation & Computer Technologies (InCACCT);2024-05-02

4. Prediction of Covid-19 confirmed cases and deaths using hybrid support vector machine-Taguchi method;Computers & Industrial Engineering;2024-05

5. Enhancing Aquaculture Efficiency;Advances in Environmental Engineering and Green Technologies;2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3