Long Short-Term Memory Networks for Automated Waste Treatment Augmented With IoT and Bioelectric Sensors

Author:

Pokkuluri Kiran Sree1ORCID,N. S. S. S. N. Usha Devi2ORCID,Khang Alex3ORCID

Affiliation:

1. Shri Vishnu Engineering College for Women, India

2. Jawaharlal Nehru Technological University, Kakinada, India

3. Global Research Institute of Technology and Engineering, USA

Abstract

In order to improve automated waste treatment system, this work investigates the combination of bioelectric sensors, internet of things (IoT), and long short-term memory (LSTM) networks. Using LSTM networks, the system gathers data from several sensors, including temperature, dissolved oxygen, pH, and microbial activity, and uses it to analyses data in real time. This makes it possible to identify anomalies, gain predictive insights, and optimize treatment parameters like chemical dosing and aeration rates. IoT and bioelectric sensor integration offers deeper insights into nutrient cycles and microbial dynamics, enabling more informed waste management decision-making. Compared to traditional procedures, this strategy seeks to minimize environmental effect, lower operating costs, and increase treatment efficiency. LSTM-based systems present promise advances in automating waste treatment processes for increased efficiency and sustainability through continuous learning and adaptation.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3