Deep Learning for Identification of Behavioral Changes

Author:

Pokkuluri Kiran Sree1ORCID,N. S. S. S. N. Usha Devi2ORCID,Khang Alex3

Affiliation:

1. Shri Vishnu Engineering College for Women, India

2. UCEK-JNTUK, India

3. Global Research Institute of Technology and Engineering, USA

Abstract

This study explores the application of long short-term memory (LSTM) networks for the identification of behavioral changes. LSTM networks, a type of recurrent neural network (RNN), excel at modeling sequential data and capturing long-range dependencies, making them well-suited for analyzing temporal patterns in human behavior. The research investigates how LSTM networks can effectively learn from sequential behavioral data, such as activity logs, physiological signals, or speech patterns, to detect deviations from normal behavioral patterns. By leveraging LSTM's ability to retain information over extended time intervals, the study aims to develop models capable of recognizing subtle shifts in behavior that may indicate changes in mental health, emotional states, or lifestyle habits. Additionally, the research explores techniques to enhance the interpretability of LSTM-based behavioral change detection models, addressing challenges related to model transparency and explainability.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3