Author:
Pratsovytyi M.V.,Goncharenko Ya. V.,Lysenko I. M.,Ratushniak S.P.
Abstract
We consider function $f$ which is depended on the parameters $0<a\in R$, $q_{0n}\in (0;1)$, $n\in N$ and convergent positive series $v_1+v_2+...+v_n+...$, defined by equality $f(x=\Delta^{Q_2^*}_{\alpha_1\alpha_2...\alpha_n...})=a^{\varphi(x)}$, where $\alpha_n\in \{0,1\}$, $\varphi(x=\Delta^{Q_2^*}_{\alpha_1\alpha_2...\alpha_n...})=\alpha_1v_1+...+\alpha_nv_n+...$, $q_{1n}=1-q_{0n}$, $\Delta^{Q_2^*}_{\alpha_1...\alpha_n...}=\alpha_1q_{1-\alpha_1,1}+\sum\limits_{n=2}^{\infty}\big(\alpha_nq_{1-\alpha_n,n}\prod\limits_{i=1}^{n-1}q_{\alpha_i,i}\big)$.In the paper we study structural, variational, integral, differential and fractal properties of the function $f$.
Publisher
Ivan Franko National University of Lviv
Reference21 articles.
1. S. Albeverio, M. Pratsiovytyi, G. Torbin, Fractal probability distributions and transformations preserving the Hausdorff-Besicovitch dimension, Ergod. Th. & Dynam. Sys., 24 (2004), 1–16.
2. L. Bourdin, O. Stanzhytskyi, E. Trelat, Addendum to Pontryagin’s maximum principle for dynamic systems on time scales, Journal of Difference Equations and Applications, 23 (2017), No10, 1760–1763.
3. S. Kakeya, On the partial sums of an infinite series, Tohoku Sci Rep., 3 (1914), No4, 159–164.
4. N.O. Korsun, M.V. Ptaysiovytyi, About the set of incomplete sums of positive seriess with one condition of homogeneity and generalization of the binary representation of numbers, Nauk. Chasop. Nats. Pedagog. Univ. Mykhaila Dragomanova, Ser 1. Fiz.-Mat. Nauky, 10 (2009), No10, 28–39.
5. J.A. Guthrie, I.E. Nymann, The topological structure of the set of subsums of an infinite series, Collog. Math., 55 (1988), No2, 323–327.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献