Identification of the Bombardier CRJ-700 Stall Dynamics Model Using Neural Networks

Author:

Tondji Yvan1,Wade Mouhamadou1,Ghazi Georges1,Mihaela Botez Ruxandra1ORCID

Affiliation:

1. École de Technologie Supérieure (ÉTS), Montreal, Quebec H3C-1 K3, Canada

Abstract

This paper aims to present a new methodology to model the aerodynamic coefficients and predict the aircraft dynamics under stall conditions, including the hysteresis cycle, using neural networks. The aerodynamic coefficients variations required for the identification process were estimated from flight data collected during different stall maneuvers. Then, a level-D-qualified Bombardier CRJ-700 virtual research equipment simulator (VRESIM) developed by CAE, Inc. and Bombardier was used to gather flight data in both linear and nonlinear stall phases. According to the Federal Aviation Administration (FAA), level D is the highest qualification level for flight dynamics and propulsion models. Multilayer perceptron (MLP) and recurrent neural networks were trained for the aerodynamic coefficients learning and their correlation with flight parameters. A new methodology for tuning the neural network parameters, such as the optimal number of layers and neurons, was developed. The resulting models were validated by comparing predicted flight data with experimental data obtained from the level D Bombardier CRJ-700 VRESIM by considering the same pilot inputs. The models developed using the proposed methodology were able to predict the CRJ-700 flight dynamics in both static and dynamic stall conditions, with very good precision, within the tolerances of the FAA.

Funder

Canada Research Chairs

Publisher

American Institute of Aeronautics and Astronautics (AIAA)

Subject

Electrical and Electronic Engineering,Computer Science Applications,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3