Affiliation:
1. Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
Abstract
This paper presents the estimation method for uncertain parameters in flight vehicles, especially missile systems, based on physics-informed neural networks (PINNs) augmented with a novel integration-based loss. The proposed method identifies four types of structured uncertainty: burnout time, rocket motor tilt angle, location of the center of pressure, and control fin bias, which significantly affect the missile performance. In the estimation framework, as neural networks (NNs) are updated, these uncertainties are also identified simultaneously because they are also included in the structure of NNs. After testing 100 simulation data, the average estimation errors are within 1% of the mean value for each type of uncertainty. The methodology is able to identify the parameters despite noise corruption in the time-series data. Compared with the conventional PINNs, adding the new loss based on the integration of differential equations yields a more reliable estimation performance for all types of uncertainty. This approach can be effective for complex systems and ill-posed inverse problems, which makes it applicable to other aerospace systems.
Funder
Agency for Defense Development
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Subject
Electrical and Electronic Engineering,Computer Science Applications,Aerospace Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献