Dynamics of pattern formation and emergence of swarming in Caenorhabditis elegans

Author:

Demir Esin1,Yaman Y Ilker2ORCID,Basaran Mustafa1ORCID,Kocabas Askin1234ORCID

Affiliation:

1. Bio-Medical Sciences and Engineering Program, Koç University, Sarıyer, Istanbul, Turkey

2. Department of Physics, Koç University, Sarıyer, Istanbul, Turkey

3. Koç University Surface Science and Technology Center, Koç University, Sarıyer, Istanbul, Turkey

4. Koç University Research Center for Translational Medicine, Koç University, Sarıyer, Istanbul, Turkey

Abstract

Many animals collectively form complex patterns to tackle environmental difficulties. Several biological and physical factors, such as animal motility, population densities, and chemical cues, play significant roles in this process. However, very little is known about how sensory information interplays with these factors and controls the dynamics of pattern formation. Here, we study the direct relation between oxygen sensing, pattern formation, and emergence of swarming in active Caenorhabditis elegans aggregates. We find that when thousands of animals gather on food, bacteria-mediated decrease in oxygen level slows down the animals and triggers motility-induced phase separation. Three coupled factors—bacterial accumulation, aerotaxis, and population density—act together and control the entire dynamics. Furthermore, we find that biofilm-forming bacterial lawns including Bacillus subtilis and Pseudomonas aeruginosa strongly alter the collective dynamics due to the limited diffusibility of bacteria. Additionally, our theoretical model captures behavioral differences resulting from genetic variations and oxygen sensitivity.

Funder

European Molecular Biology Organization

Publisher

eLife Sciences Publications, Ltd

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3