Social insects and beyond: The physics of soft, dense invertebrate aggregations

Author:

Shishkov Olga1,Peleg Orit12345

Affiliation:

1. BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA;

2. Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA;

3. Department of Physics, University of Colorado Boulder, Boulder, CO, USA;

4. Department of Applied Math, University of Colorado Boulder, Boulder, CO, USA;

5. Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA;

Abstract

Aggregation is a common behavior by which groups of organisms arrange into cohesive groups. Whether suspended in the air (like honey bee clusters), built on the ground (such as army ant bridges), or immersed in water (such as sludge worm blobs), these collectives serve a multitude of biological functions, from protection against predation to the ability to maintain a relatively desirable local environment despite a variable ambient environment. In this review, we survey dense aggregations of a variety of insects, other arthropods, and worms from a soft matter standpoint. An aggregation can be orders of magnitude larger than its individual organisms, consisting of tens to hundreds of thousands of individuals, and yet functions as a coherent entity. Understanding how aggregating organisms coordinate with one another to form a superorganism requires an interdisciplinary approach. We discuss how considering the physics of an aggregation can yield additional insights to those gained from ecological and physiological considerations, given that the aggregating individuals exchange information, energy, and matter continually with the environment and one another. While the connection between animal aggregations and the physics of non-living materials has been proposed since the early 1900s, the recent advent of physics of behavior studies provides new insights into social interactions governed by physical principles. Current efforts focus on eusocial insects; however, we show that these may just be the tip of an iceberg of superorganisms that take advantage of physical interactions and simple behavioral rules to adapt to changing environments. By bringing attention to a wide range of invertebrate aggregations, we wish to inspire a new generation of scientists to explore collective dynamics and bring a deeper understanding of the physics of dense living aggregations.

Funder

National Science Foundation (NSF) Physics of Living Systems

Publisher

SAGE Publications

Reference134 articles.

1. Preliminary characterization of hemolymph coagulation in Anopheles gambiae larvae

2. Animal aggregations, a study in general sociology. / by W. C. Allee.

3. Cell migration during morphogenesis

4. Aydin YO, Goldman DI, Bhamla MS (2020) Collective protection and transport in entangled biological and robotic active matter. bioRxiv.

5. Preface

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3