Kin-recognition and predation shape collective behaviors in the cannibalistic nematode Pristionchus pacificus

Author:

Hiramatsu FumieORCID,Lightfoot James W.ORCID

Abstract

Kin-recognition is observed across diverse species forming an important behavioral adaptation influencing organismal interactions. In many species, the molecular mechanisms involved are difficult to characterize, but in the nematode Pristionchus pacificus molecular components regulating its kin-recognition system have been identified. These determine its predatory behaviors towards other con-specifics which prevents the killing and cannibalization of kin. Importantly, their impact on other interactions including collective behaviors is unknown. Here, we explored a high altitude adapted clade of this species which aggregates abundantly under laboratory conditions, to investigate the influence of the kin-recognition system on their group behaviours. By utilizing pairwise aggregation assays between distinct strains of P. pacificus with differing degrees of genetic relatedness, we observe aggregation between kin but not distantly related strains. In assays between distantly related strains, the aggregation ratio is frequently reduced. Furthermore, abolishing predation behaviors through CRISPR/Cas9 induced mutations in Ppa-nhr-40 result in rival strains successfully aggregating together. Finally, as Caenorhabditis elegans are found naturally occurring with P. pacificus, we also explored aggregation events between these species. Here, aggregates were dominated by P. pacificus with the presence of only a small number of predators proving sufficient to disrupt C. elegans aggregation dynamics. Thus, aggregating strains of P. pacificus preferentially group with kin, revealing competition and nepotism as previously unknown components influencing collective behaviors in nematodes.

Funder

Max-Planck-Gesellschaft

Deutsche Forschungsgemeinschaft

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3