ProDMP: A Unified Perspective on Dynamic and Probabilistic Movement Primitives
Author:
Affiliation:
1. Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology, Karlsruhe, Germany
2. Bosch Center for Artificial Intelligence, Robert-Bosch-Campus 1, Renningen, Germany
Funder
Carl Zeiss Foundation through the Project JuBot
Helmholtz Association of German Research Centers
State of Baden-Württemberg through bwHPC
Deutsche Forschungsgemeinschaft
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Artificial Intelligence,Control and Optimization,Computer Science Applications,Computer Vision and Pattern Recognition,Mechanical Engineering,Human-Computer Interaction,Biomedical Engineering,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/7083369/10049284/10050558.pdf?arnumber=10050558
Reference29 articles.
1. Conditional neural movement primitives;seker;Proc Robot Sci Syst,0
2. Using probabilistic movement primitives in robotics
3. Dynamic movement primitives in robotics: A tutorial survey;saveriano,2021
4. Learning Replanning Policies With Direct Policy Search
5. Neural dynamic policies for end-to-end sensorimotor learning;bahl;Proc Adv Neural Inf Process Syst,0
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. MT-RSL: A multitasking-oriented robot skill learning framework based on continuous dynamic movement primitives for improving efficiency and quality in robot-based intelligent operation;Robotics and Computer-Integrated Manufacturing;2024-12
2. Learning human actions from complex manipulation tasks and their transfer to robots in the circular factory;at - Automatisierungstechnik;2024-09-01
3. Self-learning and autonomously adapting manufacturing equipment for the circular factory;at - Automatisierungstechnik;2024-09-01
4. Fusion dynamical systems with machine learning in imitation learning: A comprehensive overview;Information Fusion;2024-08
5. Enhancing the LLM-Based Robot Manipulation Through Human-Robot Collaboration;IEEE Robotics and Automation Letters;2024-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3