ULFAC-Net: Ultra-Lightweight Fully Asymmetric Convolutional Network for Skin Lesion Segmentation
Author:
Affiliation:
1. School of Automation, Hangzhou Dianzi University, Hangzhou, China
2. School of Computer Science, Hangzhou Dianzi University, Hangzhou, China
Funder
National Natural Science Foundation of China
Key Research and Development Project of Zhejiang Province
Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Health Information Management,Electrical and Electronic Engineering,Computer Science Applications,Health Informatics
Link
http://xplorestaging.ieee.org/ielx7/6221020/10144459/10077446.pdf?arnumber=10077446
Reference46 articles.
1. ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks
2. Cascaded context enhancement network for automatic skin lesion segmentation
3. LRNNET: A Light-Weighted Network with Efficient Reduced Non-Local Operation for Real-Time Semantic Segmentation
4. An Improved and Robust Encoder–Decoder for Skin Lesion Segmentation
5. The Lovasz-Softmax Loss: A Tractable Surrogate for the Optimization of the Intersection-Over-Union Measure in Neural Networks
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Boundary-Aware Gradient Operator Network for Medical Image Segmentation;IEEE Journal of Biomedical and Health Informatics;2024-08
2. A Deep Learning Based Critical Analysis Of Skin Lesion Classification;2024 International Conference on Advances in Modern Age Technologies for Health and Engineering Science (AMATHE);2024-05-16
3. DTONet a Lightweight Model for Melanoma Segmentation;Bioengineering;2024-04-18
4. Adaptive Expectation–Maximization-Based Kalman Filter/Finite Impulse Response Filter for MEMS-INS-Based Posture Capture of Human Upper Limbs;Micromachines;2024-03-26
5. ResDAC-Net: a novel pancreas segmentation model utilizing residual double asymmetric spatial kernels;Medical & Biological Engineering & Computing;2024-03-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3