DTONet a Lightweight Model for Melanoma Segmentation

Author:

Hao Shengnan1,Wang Hongzan1,Chen Rui2,Liao Qinping2,Ji Zhanlin13ORCID,Lyu Tao2,Zhao Li4ORCID

Affiliation:

1. Hebei Key Laboratory of Industrial Intelligent Perception, North China University of Science and Technology, Tangshan 063210, China

2. Changgeng Hospital, Institute for Precision Medicine, Tsinghua University, Beijing 100084, China

3. College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China

4. Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Tsinghua University, Beijing 100084, China

Abstract

With the further development of neural networks, automatic segmentation techniques for melanoma are becoming increasingly mature, especially under the conditions of abundant hardware resources. This allows for the accuracy of segmentation to be improved by increasing the complexity and computational capacity of the model. However, a new problem arises when it comes to actual applications, as there may not be the high-end hardware available, especially in hospitals and among the general public, who may have limited computing resources. In response to this situation, this paper proposes a lightweight deep learning network that can achieve high segmentation accuracy with minimal resource consumption. We introduce a network called DTONet (double-tailed octave network), which was specifically designed for this purpose. Its computational parameter count is only 30,859, which is 1/256th of the mainstream UNet model. Despite its reduced complexity, DTONet demonstrates superior performance in terms of accuracy, with an IOU improvement over other similar models. To validate the generalization capability of this model, we conducted tests on the PH2 dataset, and the results still outperformed existing models. Therefore, the proposed DTONet network exhibits excellent generalization ability and is sufficiently outstanding.

Funder

National Key Research and Development Program of China

Tsinghua Precision Medicine Foundation

Publisher

MDPI AG

Reference35 articles.

1. Melanoma segmentation based on deep learning;Zhang;Comput. Assist. Surg.,2017

2. Analysis and discussion of skin lesion image segmentation methods;Ming;J. Fujian Comput.,2024

3. Ronneberger, O., Fischer, P., and Brox, T. (2015, January 5–9). U-net: Convolutional networks for biomedical image segmentation. Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany. Proceedings, Part III 18.

4. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., and Liang, J. (2018, January 20). Unet++: A nested u-net architecture for medical image segmentation. Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain. Proceedings 4.

5. Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, S., Hammerla, N.Y., and Kainz, B. (2018). Attention u-net: Learning where to look for the pancreas. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3