Abstract
AbstractThe pancreas not only is situated in a complex abdominal background but is also surrounded by other abdominal organs and adipose tissue, resulting in blurred organ boundaries. Accurate segmentation of pancreatic tissue is crucial for computer-aided diagnosis systems, as it can be used for surgical planning, navigation, and assessment of organs. In the light of this, the current paper proposes a novel Residual Double Asymmetric Convolution Network (ResDAC-Net) model. Firstly, newly designed ResDAC blocks are used to highlight pancreatic features. Secondly, the feature fusion between adjacent encoding layers fully utilizes the low-level and deep-level features extracted by the ResDAC blocks. Finally, parallel dilated convolutions are employed to increase the receptive field to capture multiscale spatial information. ResDAC-Net is highly compatible to the existing state-of-the-art models, according to three (out of four) evaluation metrics, including the two main ones used for segmentation performance evaluation (i.e., DSC and Jaccard index).
Graphical abstract
Funder
Key Technologies Research and Development Program
Tsinghua Precision Medicine Foundation
Bulgarian National Science Fund
University of Limerick
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献