The sweet protein brazzein as a promising natural sweetener

Author:

Markova Ekaterina V.,Chirinskaite Angelina V.,Sopova Julia V.,Leonova Elena I.

Abstract

In the modern world, due to the overconsumption of sugar-containing products, the problem of obesity is relevant. Among the many sweeteners that minimize sugar intake, a group of sweet-tasting proteins is up-and-coming. Brazzein is the smallest of the sweet proteins (54 aa, 6473 Da), and it is also safe for obese and diabetic people since it does not affect blood sugar and insulin levels. Brazzein has high thermal stability over a wide pH range: from 2 to 8 [1]. To increase the level of sweetness of brazzein, mutant variants of this protein were created through site-directed mutagenesis, the sweetest of which is triple mutant H31R/E36D/E41A, which is 22,500 times sweeter than sucrose [2]. Since the content of brazzein in the fruits of the natural source (Pentadiplandra brazzeana) is extremely low (0.2%), various methods have been developed to obtain brazzein using heterologous expression systems, which used as producers: bacteria (Escherichia coli, Lactococcus lactis), yeast (Pichia pastoris, Kluyveromyces lactis, Saccharomyces cerevisiae), plants (Zea mays, Oryza sativa, Lactuca sativa, Nicotiana tabacum) and animals (Mus musculus) [35]. Despite the short peptide sequence, the industrial production of recombinant protein faced several problems, including low protein yield (e.g in mouse milk it was detectable on western blot analysis only) and loss of sweetness. Аn extremely relevant and promising way to obtain recombinant brazzein is the optimization of extracellular expression in bakers yeasts with the GRAS (Generally recognized as safe) status, since the safety of these microorganisms for human health can potentially significantly reduce the number of brazzein purification steps and thereby reduce its cost to consumers.

Publisher

ECO-Vector LLC

Subject

Genetics (clinical),Genetics,Ecology,Biochemistry,Ecology, Evolution, Behavior and Systematics,Agricultural and Biological Sciences (miscellaneous),Biotechnology,Health, Toxicology and Mutagenesis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3