Author:
Watson J M,Liang C W,Sexton J,Missous M
Abstract
Magnetic particle and other magnetic flux leakage (MFL)-based methods for the detection and evaluation of surfacebreaking flaws in ferromagnetic materials typically use high-strength (∼0.5 T RMS) low-frequency (≤50 Hz) magnetic fields. The rationale behind this is the ready availability
of strong permanent magnets and mains power for highstrength electromagnets. This high field strength is needed to saturate the sample and compensate for the insensitivity of magnetic particles, silicon Hall sensors, coils and other magnetic transducers. Consequently, the frequency of the
applied magnetic field is typically limited to ≤50 Hz and does not consider the frequency response of the material under test (some MFL applications use this low frequency to detect subsurface or flaws on the backwall). In this study, a probe consisting of a quantum well Hall-effect (QWHE)
sensor, an illuminating electromagnet and sensor circuitry was controlled using an automated XYZ scanner with an x-y measurement step size (ie magnetic image pixel size) of 100 microns. This probe was used to apply magnetic fields of various frequencies (DC to 1 kHz) and field strengths (5
mT to 100 mT) to ascertain a frequency and field range best suited to detecting 10 mm- and 11 mm-long longitudinal surface-breaking toe cracks in ground mild steel welds. A lift-off distance of <1 mm was controlled using a proximity laser and a z-direction motor module to autonomously control
the probe lift-off and conform to sample geometry. This study found that an applied magnetic field with a frequency of 800 Hz and a field strength of 10 mT RMS was optimal under the constraint of power consumption, based on the ratio of MFL responses from the two flaws and the weld. It was
found that other frequency field combinations had comparable or higher detection but were discounted as they had substantially higher power consumption.
Publisher
British Institute of Non-Destructive Testing (BINDT)
Subject
Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献