Application of Object Detection Algorithms in Non-Destructive Testing of Pressure Equipment: A Review

Author:

Wang Weihua12,Chen Jiugong12,Han Gangsheng12ORCID,Shi Xiushan12,Qian Gong12

Affiliation:

1. State Key Laboratory of Low-Carbon Thermal Power Generation Technology and Equipments, China Special Equipment Inspection and Research Institute, Beijing 100029, China

2. China Special Equipment Inspection and Research Institute, Beijing 100029, China

Abstract

Non-destructive testing (NDT) techniques play a crucial role in industrial production, aerospace, healthcare, and the inspection of special equipment, serving as an indispensable part of assessing the safety condition of pressure equipment. Among these, the analysis of NDT data stands as a critical link in evaluating equipment safety. In recent years, object detection techniques have gradually been applied to the analysis of NDT data in pressure equipment inspection, yielding significant results. This paper comprehensively reviews the current applications and development trends of object detection algorithms in NDT technology for pressure-bearing equipment, focusing on algorithm selection, data augmentation, and intelligent defect recognition based on object detection algorithms. Additionally, it explores open research challenges of integrating GAN-based data augmentation and unsupervised learning to further enhance the intelligent application and performance of object detection technology in NDT for pressure-bearing equipment while discussing techniques and methods to improve the interpretability of deep learning models. Finally, by summarizing current research and offering insights for future directions, this paper aims to provide researchers and engineers with a comprehensive perspective to advance the application and development of object detection technology in NDT for pressure-bearing equipment.

Funder

National Key Research and Development Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3