Deep Learning Neural Network Performance on NDT Digital X-ray Radiography Images: Analyzing the Impact of Image Quality Parameters - An Experimental Study

Author:

Hena Bata,Wei ZiangORCID,Castanedo Clemente IbarraORCID,Maldague Xavier

Abstract

In response to the growing inspection demand exerted by process automation in component manufacturing, Non-destructive testing (NDT) continues to explore automated approaches that utilize deep learning algorithms for defect identification, including within digital X-ray radiography images. This necessitates a thorough understanding of the implication of image quality parameters on the performance of these deep learning models. This study investigates the influence of two image quality parameters, namely Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio (CNR), on the performance of U-net deep learning segmentation model. Input images were acquired with varying combinations of exposure factors such as kilovoltage, milli-ampere, and exposure time, which altered the resultant quality. The data was sorted into 5 different datasets according to their measured SNR and CNR values. The deep learning model was trained 5 distinct times, utilizing a unique dataset for each training session. Training the model with high CNR values yielded an intersection over Union (IoU) metric of 0.9594 on test data of the same category but drops to 0.5875 when tested on lower CNR test data. The result in this study emphasizes the importance of achieving a balance in training dataset according to the investigated quality parameters, to enhance the performance of deep learning segmentation models in NDT radiography applications.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3