Developing a Mathematical Modelling Code for Keeping the Power of Multi Turbocharged Engines at Flight Altitudes

Author:

Roueini Ali1ORCID,Mirzabozorg Mohsen1ORCID,Kheradmand Saeid1ORCID

Affiliation:

1. Malek Ashtar University of Technology - Department of Mechanical Engineering - Isfahan - Iran

Abstract

In this paper, a code is developed in C++ programming language aiming to select and introduce a well-chosen propulsion system for appropriate operation in an aircraft. By using a suitable turbocharged engine, the inlet pressure of the engine manifold will increase to a level equal to the pressure at sea level. Therefore, the aircraft engine will not notice the drop of pressure caused by the increase in altitude. Consequently, the engine power will not be reduced. On the other hand, at high altitude, using only one turbocharger is not adequate to supply engine inlet pressure and flow rate equivalent to sea level conditions, requiring the use of more turbochargers. The code developed in this study will be able to introduce the appropriate turbocharged engine based on the flight altitude and the required power engine of an air vehicle. The altitude defined in this code ranges from 5 to 30 kilometers, which leads to a selection of one to three turbochargers plus a number of intercoolers, according to user input parameters. The objective function of this optimization problem is defined as a function of turbochargers efficiency. However, this objective function can be modified according to the user requests and requirements.

Publisher

FapUNIFESP (SciELO)

Subject

Aerospace Engineering

Reference24 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Marine diesel engine turbocharger fouling phenomenon risk assessment application by using fuzzy FMEA method;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2023-11-14

2. An Integrated Turbocharger Matching Program for Internal ‎Combustion Engines;Journal of Applied Fluid Mechanics;2021-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3