Marine diesel engine turbocharger fouling phenomenon risk assessment application by using fuzzy FMEA method

Author:

Ceylan Bulut Ozan12ORCID

Affiliation:

1. Department of Maritime Transportation and Management Engineering, Istanbul Technical University, Tuzla, Istanbul, Turkey

2. Department of Marine Engineering, Bandirma Onyedi Eylül University, Bandirma, Balikesir, Turkey

Abstract

Turbocharger fouling phenomenon was analyzed from the risk assessment perspective in this study. The research employed exhaust system and turbocharger equipment of commercial ship that equipped with a Doosan-MAN B&W 6S50 MC-C diesel engine was used as the main research materials, and utilized the fuzzy Failure Mode and Effects Analysis (FMEA) based on the expert system as a methodical approach. The experts revealed different types of turbocharger fouling failure modes (FMs), along with their respective causes and subsequent consequences. Following that, the specialists allocated an O, S, and D score to each FM. Within the framework of fuzzy logic, the process entails the establishment of input and output membership functions, as well as the construction of a fuzzy model incorporating an inference mechanism and a rule base. Based on the analysis findings, the three primary factors are as follows: low cylinder compression pressure with a Fuzzy Risk Priority Number (FRPN) score of 6.95, high main engine fuel oil consumption with a score of 6.92, and high CO, CO2, SOx emissions with a 6.45. The phenomenon of turbocharger fouling, being an inherent occurrence, has significant ramifications on the main engine, the vessel as a whole, and the ecological surroundings. The quantitative results presented in this study provide valuable insights into the risks associated with maritime endeavors. The data generated from this research can be used by stakeholders in the maritime industry to better understand this situation and take proactive measures to mitigate potential risks in the future. Furthermore, the findings of the research provide corroboration for the implementation of predictive maintenance procedures.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3