Vision graph neural network-based neonatal identification to avoid swapping and abduction

Author:

Nelson Madhusundar1,Rajendran Surendran1,Alotaibi Youseef2

Affiliation:

1. Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India

2. Department of Computer Science, College of Computer and Information Systems, Umm Al-Qura University, Makkah, 21955, Saudi Arabia

Abstract

<abstract> <p>Infant abductions from medical facilities such as neonatal switching, in which babies are given to the incorrect mother while in the hospital, are extremely uncommon. A prominent question is what we can do to safeguard newborns. A brand-new vision graph neural network (ViG) architecture was specifically created to handle this problem. Images were divided into several patches, which were then linked to create a graph by connecting their nearest neighbours to create a ViG model, which converts and communicates information between all nodes based on the graph representation of the newborn's photos taken at delivery. ViG successfully captures both local and global spatial relationships by utilizing the isotropic and pyramid structures within a vision graph neural network, providing both precise and effective identification of neonates. The ViG architecture implementation has the ability to improve the security and safety of healthcare facilities and the well-being of newborns. We compared the accuracy, recall, and precision, F1-Score, Specificity with CNN, GNN and Vision GNN of the network. In that comparison, the network has a Vision GNN accuracy of 92.65%, precision of 92.80%, F1 score of 92.27%, recall value of 92.25%, and specificity of 98.59%. The effectiveness of the ViG architecture was demonstrated using computer vision and deep learning algorithms to identify the neonatal and to avoid baby swapping and abduction.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3