Improved sports image classification using deep neural network and novel tuna swarm optimization

Author:

Zhou Zetian,Zhang Heqing,Effatparvar Mehdi

Abstract

AbstractSports image classification is a complex undertaking that necessitates the utilization of precise and robust techniques to differentiate between various sports activities. This study introduces a novel approach that combines the deep neural network (DNN) with a modified metaheuristic algorithm known as novel tuna swarm optimization (NTSO) for the purpose of sports image classification. The DNN is a potent technique capable of extracting high-level features from raw images, while the NTSO algorithm optimizes the hyperparameters of the DNN, including the number of layers, neurons, and activation functions. Through the application of NTSO to the DNN, a finely-tuned network is developed, exhibiting exceptional performance in sports image classification. Rigorous experiments have been conducted on an extensive dataset of sports images, and the obtained results have been compared against other state-of-the-art methods, including Attention-based graph convolution-guided third-order hourglass network (AGTH-Net), particle swarm optimization algorithm (PSO), YOLOv5 backbone and SPD-Conv, and Depth Learning (DL). According to a fivefold cross-validation technique, the DNN/NTSO model provided remarkable precision, recall, and F1-score results: 97.665 ± 0.352%, 95.400 ± 0.374%, and 0.8787 ± 0.0031, respectively. Detailed comparisons reveal the DNN/NTSO model's superiority toward various performance metrics, solidifying its standing as a top choice for sports image classification tasks. Based on the practical dataset, the DNN/NTSO model has been successfully evaluated in real-world scenarios, showcasing its resilience and flexibility in various sports categories. Its capacity to uphold precision in dynamic settings, where elements like lighting, backdrop, and motion blur are prominent, highlights its utility. The model's scalability and efficiency in analyzing images from live sports competitions additionally validate its suitability for integration into real-time sports analytics and media platforms. This research not only confirms the theoretical superiority of the DNN/NTSO model but also its pragmatic effectiveness in a wide array of demanding sports image classification assignments.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3