A hybrid neural network – world cup optimization algorithm for melanoma detection
Author:
Razmjooy Navid1, Sheykhahmad Fatima Rashid1, Ghadimi Noradin1
Affiliation:
1. Young Researchers and Elite club, Ardabil Branch , Islamic Azad University , Ardabil , Iran
Abstract
Abstract
One of the most dangerous cancers in humans is Melanoma. However, early detection of melanoma can help us to cure it completely. This paper presents a new efficient method to detect malignancy in melanoma via images. At first, the extra scales are eliminated by using edge detection and smoothing. Afterwards, the proposed method can be utilized to segment the cancer images. Finally, the extra information is eliminated by morphological operations and used to focus on the area which melanoma boundary potentially exists. To do this, World Cup Optimization algorithm is utilized to optimize an MLP neural Networks (ANN). World Cup Optimization algorithm is a new meta-heuristic algorithm which is recently presented and has a good performance in some optimization problems. WCO is a derivative-free, Meta-Heuristic algorithm, mimicking the world’s FIFA competitions. World cup Optimization algorithm is a global search algorithm while gradient-based back propagation method is local search. In this proposed algorithm, multi-layer perceptron network (MLP) employs the problem’s constraints and WCO algorithm attempts to minimize the root mean square error. Experimental results show that the proposed method can develop the performance of the standard MLP algorithm significantly.
Publisher
Walter de Gruyter GmbH
Reference27 articles.
1. Razmjooy, N., Mousavi, B. S., Soleymani, F., and Khotbesara, M. H., A computer-aided diagnosis system for malignant melanomas, Neural Comput Appl, 2013, 23(7-8), 2059-2071 2. Lie, W.-R., Lipsey, J., Warmke, T., Yan, L., and Mistry, J., Quantitative protein profiling of tumor angiogenesis and metastasis biomarkers in mouse and human models, ed: AACR, 2014 3. Rashid Sheykhahmad, F., Razmjooy, N., and Ramezani, M., A Novel Method for Skin Lesion Segmentation, Int. J. Inf., Sec. Sys. Manage., 2015, 4(2), 458-466 4. Parsian, A., Ramezani, M., and Ghadimi, N., A hybrid neural network-gray wolf optimization algorithm for melanoma detection, Biomed. Res., 2017, 28(8) 5. Razmjooy, N., Ramezani, M., and Ghadimi, N., Imperialist competitive algorithm-based optimization of neuro-fuzzy system parameters for automatic red-eye removal, Int. J. Fuzzy Syst., 2017, 19(4), 1144-1156
Cited by
214 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|