Deep-learning-based intelligent neonatal seizure identification using spatial and spectral GNN optimized with the Aquila algorithm

Author:

Nelson Madhusundar1,Rajendran Surendran1,Khalaf Osamah Ibrahim2,Hamam Habib3456

Affiliation:

1. Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India

2. Department of Solar, Al-Nahrain Research Center for Renewable Energy, Al-Nahrain University, Jadriya, Baghdad, Iraq

3. Faculty of Engineering, Uni de Moncton, NB, E1A3E9, Canada

4. Hodmas University College, Taleh Area, Mogadishu, Somalia

5. Bridges for Academic Excellence, Tunis, Centre-Ville, Tunisia

6. School of Electrical Engineering, University of Johannesburg, South Africa

Abstract

<abstract> <p>Diagnosing and treating newborn seizures accurately and promptly is crucial for providing the best possible care for these patients. For the purpose of intelligently identifying newborn seizures, this work introduced a unique method that uses spectral and spatial graph neural networks (SSGNNs) optimized with the Aquila algorithm. Using electroencephalogram (EEG) recordings, the suggested methodology takes advantage of the complex spatial and spectral characteristics of infant brain activity. Spatial and spectral GNNs were used to extract significant spatiotemporal patterns suggestive of seizure episodes by organizing the brain activity data as a graph, with nodes representing various brain regions and edges signifying functional relationships. By combining spectral and spatial data, the depiction of newborn brain dynamics was improved and made it possible to distinguish between seizure and non-seizure phases with greater accuracy. Moreover, the introduction of the Aquila algorithm improved the GNNs' performance in seizure identification tasks by streamlining the training process. A large dataset of EEG recordings from newborns with and without seizures was used to assess the effectiveness of the suggested method. Higher accuracy, sensitivity, and specificity in seizure detection were achieved in the experimental results, which showed greater performance when compared to conventional methods. This work offered an automated, data-driven method for identifying newborn seizures, which is a major development in the treatment of newborns. By combining spectral and spatial GNNs and optimizing the results using the Aquila method, it is possible to enhance seizure detection accuracy and potentially prevent neurological consequences in affected children by intervening early. This method has the potential to completely change the way neonatal care is provided by giving medical professionals a strong tool for accurate and prompt seizure monitoring in neonatal intensive care units (NICU).</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3