Author:
Ban Jiuchao,Wang Yiran,Liu Bingjie,Li Hongjun
Abstract
<abstract><p>A rational investor always pursues a portfolio with the greatest possible return and the least possible risk. Therefore, a core issue of investment decision analysis is how to make an optimal investment choice in the market with fuzzy information and realize the balance between maximizing the return on assets and minimizing the risk. In order to find optimal investment portfolios of financial assets with high volatility, such as gold and Bitcoin, a mathematical model for formulating investment strategies based on the long short-term memory time series and the dynamic programming model combined with the greedy algorithm has been proposed in this paper. The model provides the optimal daily strategy for the five-year trading period so that it can achieve the maximum expected return every day under the condition of a certain investment amount and a certain risk. In addition, a reasonable risk measure based on historical increases is established while considering the weights brought by different investment preferences. The empirical analysis results show that the optimal total assets and initial capital obtained by the model change in the same proportion, and the model is relatively stable and has strong adaptability to the initial capital. Therefore, the proposed model has practical reference value and research significance for investors and promotes a better combination of computer technology and financial investment decision.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference14 articles.
1. D. G. Baur, T. Dimpfl, K. Kuck, Bitcoin, gold and the us dollar-a replication and extension, Financ. Res. Lett., 25 (2018), 103–110. https://doi.org/10.1016/j.frl.2017.10.012
2. I. Musialkowska, A. Kliber, K. Świerczyńska, P. Marszalek, Looking for a safe-haven in a crisis-driven venezuela: The caracas stock exchange vs gold, oil and bitcoin, Transform. Gov. People, 14 (2020), 475–494. http://doi.org/10.1108/TG-01-2020-0009
3. L. Rao, Portfolio selection based on uncertain fractional differential equation, AIMS Mathematics, 7 (2022), 4304–4314. http://doi.org/10.3934/math.2022238
4. W. Wang, N. Zhang, D. Fan, X. Wang, Intelligent portfolio optimization based on dynamic trading and risk constraints, J. Cent. Univ. Financ. Econ., 2021, 32–47.
5. C. Yang, X. Wang, A steam injection distribution optimization method for sagd oil field using lstm and dynamic programming, ISA T., 110 (2020), 195–248. https://doi.org/10.1016/j.isatra.2020.10.029
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献