Accurate recognition of rice plants based on visual and tactile sensing

Author:

Chen Xueshen1,Dang Peina1,Zhang Enzao1,Chen Yanxue1,Tang Cunyao1,Qi Long1ORCID

Affiliation:

1. College of Engineering, South China Agricultural University Guangzhou China

Abstract

AbstractBACKGROUNDCrop recognition is the basis of intelligent agricultural machine operations. Visual perception methods have achieved high recognition accuracy. However, the reliability of such methods is difficult to guarantee because of the complex environment of paddy fields. Tactile sensing methods are not affected by background or environmental interference, and have high reliability. However, in an ideal environment, the recognition accuracy is not as high as that of the visual method.RESULTSTo balance the accuracy and reliability of rice plant recognition, a combined visual–tactile method was proposed in this study. A rice plant recognition device was developed with a poly(vinylidene fluoride) sensor embedded inside the device as a tactile perceptron and a graphic designed as a visual perceptron. The primary role of the tactile perceptron is to initially recognize rice plants and provide a time point for image capture for visual perception. The main role of the visual perceptron is to extract features from the captured images and recognize rice plants again. The results of tactile and visual recognition were eventually fused to achieve accurate recognition of rice plants.CONCLUSIONThe contact speed between the recognition perceptron and rice–weed was selected for the field performance test based on the real situation of paddy field operation. The results showed that the accuracy and reliability of rice plant recognition decreased as the travelling speed of the paddy field operation machine increased. The results of this study provide a basis for intelligent farm machinery operations in rice fields. © 2024 Society of Chemical Industry.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3