SAMS-Net: Fusion of attention mechanism and multi-scale features network for tumor infiltrating lymphocytes segmentation

Author:

Zhang Xiaoli12,Liu Kunmeng23,Zhang Kuixing1,Li Xiang23,Sun Zhaocai23,Wei Benzheng23

Affiliation:

1. College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan 250355, China

2. Center for Medical Artificial Intelligence, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China

3. Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China

Abstract

<abstract> <p>Automatic segmentation of tumor-infiltrating lymphocytes (TILs) from pathological images is essential for the prognosis and treatment of cancer. Deep learning technology has achieved great success in the segmentation task. It is still a challenge to realize accurate segmentation of TILs due to the phenomenon of blurred edges and adhesion of cells. To alleviate these problems, a squeeze-and-attention and multi-scale feature fusion network (SAMS-Net) based on codec structure, namely SAMS-Net, is proposed for the segmentation of TILs. Specifically, SAMS-Net utilizes the squeeze-and-attention module with the residual structure to fuse local and global context features and boost the spatial relevance of TILs images. Besides, a multi-scale feature fusion module is designed to capture TILs with large size differences by combining context information. The residual structure module integrates feature maps from different resolutions to strengthen the spatial resolution and offset the loss of spatial details. SAMS-Net is evaluated on the public TILs dataset and achieved dice similarity coefficient (DSC) of 87.2% and Intersection of Union (IoU) of 77.5%, which improved by 2.5% and 3.8% compared with UNet. These results demonstrate the great potential of SAMS-Net in TILs analysis and can further provide important evidence for the prognosis and treatment of cancer.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Reference45 articles.

1. C. Kolberg-Liedtke, F. Feuerhake, M. Garke, M. Christgen, R. Kates, E. M. Grischke, et al., Impact of stromal tumor-infiltrating lymphocytes (sTILs) on response to neoadjuvant chemotherapy in triple-negative early breast cancer in the WSG-ADAPT TN trial, Breast Cancer Res., 24 (2022), 1–13. https://doi.org/10.1186/s13058-022-01552-w

2. T. Nguyen, M. V. Ngo, V. P. Nguyen, Histopathological imaging classification of breast tissue for cancer diagnosis support using deep learning models, in International Conference on Industrial Networks and Intelligent Systems, 444 (2022), 152–164. https://doi.org/10.1007/978-3-031-08878-0_11

3. G. Floris, G. Broeckx, A. Antoranz, M. D. Schepper, R. Salgado, C. Desmedt, et al., Tumor infiltrating lymphocytes in breast cancer: Implementation of a new histopathological biomarker, in Biomarkers of the Tumor Microenvironment, Springer, (2022), 207–243. https://doi.org/10.1007/978-3-030-98950-7_13

4. H. Kuroda, T. Jamiyan, R. Yamaguchi, A. Kakumoto, A. Abe, O. Harada, et al., Tumor microenvironment in triple-negative breast cancer: The correlation of tumor-associated macrophages and tumor-infiltrating lymphocytes, Clin. Transl. Oncol., 23 (2021), 2513–2525. https://doi.org/10.1007/s12094-021-02652-3

5. T. Odate, M. K. Le, M. Kawai, M. Kubota, Y. Yamaguchi, T. Kondo, Tumor-infiltrating lymphocytes in breast FNA biopsy cytology: A predictor of tumor-infiltrating lymphocytes in histologic evaluation, Cancer Cytopathol., 130 (2022), 336–343. https://doi.org/10.1002/cncy.22551

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3