TS-GCN: A novel tumor segmentation method integrating transformer and GCN
-
Published:2023
Issue:10
Volume:20
Page:18173-18190
-
ISSN:1551-0018
-
Container-title:Mathematical Biosciences and Engineering
-
language:
-
Short-container-title:MBE
Author:
Song Haiyan1, Liu Cuihong23, Li Shengnan1, Zhang Peixiao1
Affiliation:
1. The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China 2. Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China 3. School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, China
Abstract
<abstract><p>As one of the critical branches of medical image processing, the task of segmentation of breast cancer tumors is of great importance for planning surgical interventions, radiotherapy and chemotherapy. Breast cancer tumor segmentation faces several challenges, including the inherent complexity and heterogeneity of breast tissue, the presence of various imaging artifacts and noise in medical images, low contrast between the tumor region and healthy tissue, and inconsistent size of the tumor region. Furthermore, the existing segmentation methods may not fully capture the rich spatial and contextual information in small-sized regions in breast images, leading to suboptimal performance. In this paper, we propose a novel breast tumor segmentation method, called the transformer and graph convolutional neural (TS-GCN) network, for medical imaging analysis. Specifically, we designed a feature aggregation network to fuse the features extracted from the transformer, GCN and convolutional neural network (CNN) networks. The CNN extract network is designed for the image's local deep feature, and the transformer and GCN networks can better capture the spatial and context dependencies among pixels in images. By leveraging the strengths of three feature extraction networks, our method achieved superior segmentation performance on the BUSI dataset and dataset B. The TS-GCN showed the best performance on several indexes, with Acc of 0.9373, Dice of 0.9058, IoU of 0.7634, F1 score of 0.9338, and AUC of 0.9692, which outperforms other state-of-the-art methods. The research of this segmentation method provides a promising future for medical image analysis and diagnosis of other diseases.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Reference41 articles.
1. M. H. Yap, G. Pons, J. Marti, S. Ganau, M. Sentis, R. Zwiggelaar, et al., Automated breast ultrasound lesions detection using convolutional neural networks, IEEE J. Biomed. Health Inf., 22 (2018), 1218–1226. https://doi.org/10.1109/JBHI.2017.2731873 2. J. Gao, Q. Jiang, B. Zhou, D. Chen, Convolutional neural networks for computer-aided detection or diagnosis in medical image analysis: An overview, Math. Biosci. Eng., 16 (2019), 6536–6561. https://doi.org/10.3934/mbe.2019326 3. C. Xu, Y. Qi, Y. Wang, M. Lou, J. Pi, Y. Ma, ARF-Net: An adaptive receptive gield network for breast mass segmentation in whole mammograms and ultrasound images, Biomed. Signal Process. Control, 71 (2022), 103178. https://doi.org/10.1016/j.bspc.2021.103178 4. Y. Wang, N. Wang, M. Xu, J. Yu, C. Qin, X. Luo, et al., Deeply-supervised networks with threshold loss for cancer detection in automated breast ultrasound, IEEE Trans. Med. Imaging, 39 (2019), 866–876. https://doi.org/10.1109/TMI.2019.2936500 5. S. Jiang, J. Li, Z. Hua, Transformer with progressive sampling for medical cellular image segmentation, Math. Biosci. Eng., 19 (2022), 12104–12126. https://doi.org/10.3934/mbe.2022563
|
|