Affiliation:
1. The Key Laboratory of Intelligent Optimization and Information Processing, Minnan Normal University, Zhangzhou 363000, China
2. College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
Abstract
<abstract><p>With the development of deep learning, medical image segmentation technology has made significant progress in the field of computer vision. The Unet is a pioneering work, and many researchers have conducted further research based on this architecture. However, we found that most of these architectures are improvements in the backward propagation and integration of the network, and few changes are made to the forward propagation and information integration of the network. Therefore, we propose a feedback mechanism Unet (FM-Unet) model, which adds feedback paths to the encoder and decoder paths of the network, respectively, to help the network fuse the information of the next step in the current encoder and decoder. The problem of encoder information loss and decoder information shortage can be well solved. The proposed model has more moderate network parameters, and the simultaneous multi-node information fusion can alleviate the gradient disappearance. We have conducted experiments on two public datasets, and the results show that FM-Unet achieves satisfactory results.</p></abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献