3D human pose detection using nano sensor and multi-agent deep reinforcement learning

Author:

Sun Yangjie,Che Xiaoxi,Zhang Nan

Abstract

<abstract> <p>Due to the complexity of three-dimensional (3D) human pose, it is difficult for ordinary sensors to capture subtle changes in pose, resulting in a decrease in the accuracy of 3D human pose detection. A novel 3D human motion pose detection method is designed by combining Nano sensors and multi-agent deep reinforcement learning technology. First, Nano sensors are placed in key parts of the human to collect human electromyogram (EMG) signals. Second, after de-noising the EMG signal by blind source separation technology, the time-domain and frequency-domain features of the surface EMG signal are extracted. Finally, in the multi-agent environment, the deep reinforcement learning network is introduced to build the multi-agent deep reinforcement learning pose detection model, and the 3D local pose of the human is output according to the features of the EMG signal. The fusion and pose calculation of the multi-sensor pose detection results are performed to obtain the 3D human pose detection results. The results show that the proposed method has high accuracy for detecting various human poses, and the accuracy, precision, recall and specificity of 3D human pose detection results are 0.97, 0.98, 0.95 and 0.98, respectively. Compared with other methods, the detection results in this paper are more accurate, and can be widely used in medicine, film, sports and other fields.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey on multi-agent reinforcement learning and its application;Journal of Automation and Intelligence;2024-06

2. Recent Advances in Nanosensors for Motion Detection;ACS Applied Electronic Materials;2024-02-15

3. Trajectory Method for Defense Human Motion Posture Based on Nano-Sensor;Brazilian Archives of Biology and Technology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3