Efficient Actor-Critic Reinforcement Learning With Embodiment of Muscle Tone for Posture Stabilization of the Human Arm

Author:

Iwamoto Masami1,Kato Daichi1

Affiliation:

1. Toyota Central R&D Labs., Aichi 480-1192 Japan

Abstract

This letter proposes a new idea to improve learning efficiency in reinforcement learning (RL) with the actor-critic method used as a muscle controller for posture stabilization of the human arm. Actor-critic RL (ACRL) is used for simulations to realize posture controls in humans or robots using muscle tension control. However, it requires very high computational costs to acquire a better muscle control policy for desirable postures. For efficient ACRL, we focused on embodiment that is supposed to potentially achieve efficient controls in research fields of artificial intelligence or robotics. According to the neurophysiology of motion control obtained from experimental studies using animals or humans, the pedunculopontine tegmental nucleus (PPTn) induces muscle tone suppression, and the midbrain locomotor region (MLR) induces muscle tone promotion. PPTn and MLR modulate the activation levels of mutually antagonizing muscles such as flexors and extensors in a process through which control signals are translated from the substantia nigra reticulata to the brain stem. Therefore, we hypothesized that the PPTn and MLR could control muscle tone, that is, the maximum values of activation levels of mutually antagonizing muscles using different sigmoidal functions for each muscle; then we introduced antagonism function models (AFMs) of PPTn and MLR for individual muscles, incorporating the hypothesis into the process to determine the activation level of each muscle based on the output of the actor in ACRL. ACRL with AFMs representing the embodiment of muscle tone successfully achieved posture stabilization in five joint motions of the right arm of a human adult male under gravity in predetermined target angles at an earlier period of learning than the learning methods without AFMs. The results obtained from this study suggest that the introduction of embodiment of muscle tone can enhance learning efficiency in posture stabilization disorders of humans or humanoid robots.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3