Human Posture Recognition and Estimation Method Based on 3D Multiview Basketball Sports Dataset

Author:

Song Xuhui1,Fan Linyuan2ORCID

Affiliation:

1. Department of Sports, Capital University of Economics and Business, Beijing 100070, China

2. School of Statistics, Capital University of Economics and Business, Beijing 100070, China

Abstract

In traditional 3D reconstruction methods, using a single view to predict the 3D structure of an object is a very difficult task. This research mainly discusses human pose recognition and estimation based on 3D multiview basketball sports dataset. The convolutional neural network framework used in this research is VGG11, and the basketball dataset Image Net is used for pretraining. This research uses some modules of the VGG11 network. For different feature fusion methods, different modules of the VGG11 network are used as the feature extraction network. In order to be efficient in computing and processing, the multilayer perceptron in the network model is implemented by a one-dimensional convolutional network. The input is a randomly sampled point set, and after a layer of perceptron, it outputs a feature set of n × 16. Then, the feature set is sent to two network branches, one is to continue to use the perceptron method to generate the feature set of n × 1024, and the other network is used to extract the local features of points. After the RGB basketball sports picture passes through the semantic segmentation network, a picture containing the target object is obtained, and the picture is input to the constructed feature fusion network model. After feature extraction is performed on the RGB image and the depth image, respectively, the RGB feature, the local feature of the point cloud, and the global feature are spliced and fused to form a feature vector of N × 1152. There are three branches for this vector network, which, respectively, predict the object position, rotation, and confidence. Among them, the feature dimensionality reduction is realized by one-dimensional convolution, and the activation function is the ReLU function. After removing the feature mapping module, the accuracy of VC-CNN_v1 dropped by 0.33% and the accuracy of VC-CNN_v2 dropped by 0.55%. It can be seen from the research results that the addition of the feature mapping module improves the recognition effect of the network to a certain extent

Funder

Fundamental Scientific Research of the Beijing Colleges in CUEB

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leg postural identification framework based on one-dimensional force data using machine learning models;Intelligent Computing Techniques in Biomedical Imaging;2025

2. Driverless Vehicle Tracking Algorithm Based on Convolutional Neural network;2024 39th Youth Academic Annual Conference of Chinese Association of Automation (YAC);2024-06-07

3. Research on Calisthenics Body Action Recognition Algorithm based on HRNet;Proceedings of the 5th International Conference on Computer Information and Big Data Applications;2024-04-26

4. EVALUATION OF ATHLETE PERFORMANCE AND RECOVERY IN AN INTELLIGENT SPORTS ENVIRONMENT;REV INT MED CIENC AC;2024

5. Recent Advances in Nanosensors for Motion Detection;ACS Applied Electronic Materials;2024-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3