Differentiation of beef, buffalo, pork, and wild boar meats using colorimetric and digital image analysis coupled with multivariate data analysis

Author:

Swartidyana Fayca Rudhatin,Yuliana Nancy Dewi,Adnyane I Ketut Mudite,Hermanianto Joko,Jaswir Irwandi

Abstract

Beef price is relatively expensive, which makes this commodity vulnerable to be counterfeited. The development of rapid, cheap and robust analytical methods for meats authentication has therefore become increasingly important. In this study, colorimetric and digital image analysis methods were used to characterize and classify four types of meat (beef, buffalo, pork, wild boar) and two muscle types from each sample (Semitendinosus and Vastus lateralis). Multivariate data analysis (PCA and OPLS-DA) was used to observe classification pattern among species using different color parameters data obtained from meat chromameter and digital image measurement. The results showed that PCA and OPLS-DA successfully classified meat from different species and different muscle type based on color, both in chromameter and in image analysis. It was shown that pork had the highest lightness level, and was the most different among the four types of meat tested. Beef was predominated by yellowish color, while buffalo meat had the highest reddish color level.  Semitendinosus and Vastus lateralis muscles had different color intensity where Vastus lateralis exhibited darker color intensity. This study showed that meat color analysis using chromameter and imaging techniques can be used as cheap and quick tools to discriminate meats form different species and different muscles type.

Publisher

Department of Food Science and Technology, IPB University (Bogor Agricultural University)

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trade and consumption of buffalo meat in Brazil;Meat Science;2024-02

2. Minced Meat Classification using Digital Imaging System Coupled with Machine Learning;2023 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA);2023-11-14

3. BUFFALO MEAT QUALITY, PROCESSING, AND MARKETING: HARNESSING ITS BENEFITS AND NUTRACEUTICAL POTENTIAL;REV CIENT-FAC CIEN V;2023

4. Adulteration detection in minced beef using low-cost color imaging system coupled with deep neural network;Frontiers in Sustainable Food Systems;2022-11-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3